Effect of internal radiation on the crystal-melt interface shape in Czochralski oxide growth O.N.Budenkova ${ }^{\text {a }}$, V.M.Mamedov ${ }^{\text {a }}$, M.G.Vasiliev ${ }^{\text {a }}$, V.S.Yuferev ${ }^{\text {a }}$, Yu.N.Makarov ${ }^{\text {b }}$
A. A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences,

26 Politekhnicheskaya st, St:Petersburg 194021, Russia
Tel: +7-812-247-9175; Fax: +7-812-247-10-17; E-mail: olganb@mail. offervu
${ }^{b}$ USA Semiconductor Technology Research, Inc.,
P.O. Box 70604, Richmond, VA 23255-0604, USA;

Tel.: +1-804-304-8092; Fax: +1-804-217-70-76; E-mail: yuri.makarov@semitech.us

Abstract

Introduction. Most oxide crystals (BGO, BSO, BTO, YAG, GGG) display transparency to infrared radiation that can greatly influence the crystal-melt interface shape during Czochralkki growth since an additional mechanism greatly influence the crystal-melt interface shape during Czochralkki growth since an additional mechanism arises for aheat removal fom the vicinity of the crystallization front. Additional important factor affecting upon the shape of solidfliquid interface is related to the Fressel's reflection (refraction) at the transparent upon the shape of solid/liquid interface is related to the Fresnel's rellection (refiaction) at the transparent crrsstal surface [1]. crystal surface [1]. 1. The shape of real crystals can be appreciably differed from a regular cylinder or a cone that has to lead to scaterig of radiaion at the crssta surface and, consequently, to smoohing of the radiation heat flux distribution at he meltsolid interace. Many oxide crystals demonstrate the Many oxide crystals demonstrate the pronounced tendency toward faceting of the solidification front that imply considerable supercooling at the facetted interface which should be taken into account in global simulation.

Note:
Up to now numerical calculation of facet formation was performed only for Bridgman
process and internal radiation transport was treated using either the Rosseland diffusion approximation $[2]$ or P_{1}-approximation [3]
The objectives of the modeling:

1. To investigate the influence of defiections in the shape of a real crystal from conical and
cylindrical geometry on the distributions of radiative heat flux over the cryssallization fiont. 2. To investigate the effect of intemal radiation and Fresnel reflection at the crystal surface on
the process of facet fomation in Cz oxides growth. As a representative growth process, the $\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}$ low-thermal gradients Cz
growth was considered (see Fig A).

Fig. 13. Temperature field in ithe
crystal near the crystallization
font for

