PECULARITIES OF THE TEMPERATURE FIELDS IN OXIDE SEMITRANSPARENT CRYSTALS **GROWN BY CZOCHRALSKI TECHNIQUE.**

*Soft*impact

loffe

Introduction.

- - of the crystal, the radiative thermal sources can influence on temperature field in a crystal to a

The aim of the present paper is

Dimensionless parameters

 $\tau = \alpha R$

 $\alpha-absorption$ coefficient in the most transparent range R-crystal radius (probably, is not the best parameter) 2. Radiative-conductive parameter characterizes the relation between the conductive and radiative heat fluxes

 $\begin{array}{ll} \mbox{melting temperatures} & \mbox{σ-Stefan-Boltzman's constant} \\ \mbox{melting temperatures} & \mbox{w_1-Plank's weight function} \\ \mbox{thermal conductivity} & \mbox{for the most transparent band.} \end{array}$

- coefficients are known at least at room temperatures;

• the smaller value of τ corresponds to a

M=4.8. 10-2

 $\tau = 0.1426$

Growth parameters and materials properties

	AI_2O_3	Bi ₄ Ge ₁₂ O ₃	Bi ₁₂ GeO ₂₀	Bi12SiO20
Growth parameters				
Crystal/crucible radius, cm				
Crystal rotation rate, rpm				
Crystal properties				
Absorption coefficient of the crystal in the most transparent band, cm ⁻¹	0.1926	0.03	0.4822	0.1019
	8.1·10 ⁻³	0.15	9.99•10 ⁻³	4.8·10 ⁻²
Melt properties				
Density, kg/m ³				
Kinematical viscosity, m ² /s				

- in BGO-sillenite crystal the center of the boule is cooled more intensively than the crystal surface; in BSO-sillenite crystal temperature of the whole crystal decreases.

Conclusions

Results presented here demonstrate the extremely important role of specular reflection in formation of the temperature fields in oxide crystals grown by Cz technique.

M=9.99. 10-3

 $\tau = 0.6758$

- 2. Distortion of temperature isolines correlates with the magnitude of conductive-radiative parameter: the less is value M, the greater distortion of temperature field one should expect.
 2.1. There should be non-uniform dependence of temperature perturbation on the value M, since M=0 corresponds to opaque crystals
- 3. Deflection of the crystallization front depends on the optical thickness in the same way: the less is the optical